nilai limit x mendekat 3 dari
[tex] \frac{x {}^{2} - 9 }{3x - 9} [/tex]
[tex] \frac{x {}^{2} - 9 }{3x - 9} [/tex]
Penyelesaian:
Soal:
[tex] \frac{lim}{x - > 3} \frac{x {}^{2} - 9 }{3x - 9} [/tex]
Jawab:
[tex] = \frac{x {}^{2} - 9}{3x - 9} [/tex]
[tex] = \frac{(x - 3)(x + 3)}{3(x - 3)} [/tex]
[tex] = \frac{x + 3}{3} [/tex]
[tex] = \frac{3 + 3}{3} [/tex]
[tex] = \frac{6}{3} [/tex]
[tex] = 2[/tex]
Semoga Membantu CMIW^_^
[answer.2.content]